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A highly granular temporary 
migration dataset derived from 
mobile phone data in Senegal
Paul Blanchard   1,2 ✉ & Stefania Rubrichi3

Understanding temporary migration is crucial for addressing various socio-economic and environmental 
challenges in developing countries. However, traditional surveys often fail to capture such movements 
effectively, leading to a scarcity of reliable data, particularly in sub-Saharan Africa. This article 
introduces a detailed and open-access dataset that leverages mobile phone data to capture temporary 
migration in Senegal with unprecedented spatio-temporal detail. The dataset provides measures of 
migration flows and stocks across 151 locations across the country and for each half-month period 
from 2013 to 2015, with a specific focus on movements lasting between 20 and 180 days. The article 
presents a suite of methodological tools that not only includes algorithmic methods for the detection 
of temporary migration events in digital traces, but also addresses key challenges in aggregating 
individual trajectories into coherent migration statistics. These methodological advancements are not 
only pivotal for the intrinsic value of the dataset but also adaptable for generating systematic migration 
statistics from other digital trace datasets in other contexts.

Background & Summary
The movement of people across space is intricately linked with economic activity and economic development 
processes. Previous research examining mobility within countries have predominantly focused on the signifi-
cance of permanent migration in fostering growth and structural transformation1,2. Such studies mostly delve 
into the factors influencing and hindering the reallocation of individuals from a less productive rural sector to 
an urban non-agricultural sector.

Yet, a growing body of research has highlighted the importance of other forms of short-term mobility in 
developing countries, such as temporary migration movements. These flows of internal movements have been 
found to be incredibly common and to largely exceed permanent moves3–5. They have at first been portrayed 
as a sign of failure of rural livelihoods6,7 but have also been described more recently as a structural component 
within households’ livelihood strategies4,5,8. Despite its proven significance, temporary migration is seldom inte-
grated into national statistical systems in a systematic way. Short-term movements are intrinsically difficult to 
measure (e.g., due to attrition and recall biases) and require specialized – and oftentimes costly – surveys9. More 
importantly, the rare surveys measuring temporary migration often adopt standard definitions that do not nec-
essarily allow to capture relatively short trips, which are nonetheless frequent4. Temporary migration patterns 
thus remain poorly documented at national scales, and especially so in sub-Saharan Africa.

This article introduces an open access dataset containing highly granular temporary migration estimates 
derived from mobile phone data in Senegal. The dataset includes measurements of migration flows and stocks 
across 151 locations spanning the entire country – these locations encompass the rural areas of 112 districts 
and 39 cities. We provide estimates of migration movements directly observed in the data, which are further 
extrapolated using correction methods to estimate total migration within the broader population. Estimates are 
provided for each half-month period over the 2013-2015 timeframe, considering mobility events lasting from 
20 to 180 days. The unique level of granularity offered by this dataset aims to furnish researchers from various 
disciplines, including economists, demographers, environmental sociologists, and others, with a robust founda-
tion of information to advance our understanding of the characteristics, causes and consequences of temporary 
movements. Comprehensive data on short-term movements are indeed crucially needed to inform development 
practitioners and policy makers on various matters and support the design of adequate policy interventions. 
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These interventions include, for instance, responses to the effects of environmental shocks, climate change, epi-
demics and conflicts on short-term population dynamics. Additionally, real migration measures derived from 
mobile phone data can be employed to inform and calibrate models that generate synthetic OD data, including 
emerging AI-based tools10.

The development of the proposed dataset arises within a context where digital footprints generated by the 
use of digital services and devices have emerged as a promising source of big data for measuring human mobility 
on broader scales. More importantly, these data exhibit a proven capability to capture subtler human move-
ments with an increased spatio-temporal granularity11,12. In the field of migration studies, they represent a sig-
nificant opportunity to improve migration estimates and better inform policy13–16. In particular, some studies 
have leveraged mobile phone metadata to quantify seasonal and temporary migration movements in develop-
ing contexts17,18. However, none of the corresponding datasets of migration estimates have been made publicly 
accessible, and the methods usually employed to derive migration measures are subject to certain limitations. 
For instance, migration events are typically identified as a change in the estimated location between two con-
secutive time periods – e.g. calendar months – calculated as the modal location observed during those time 
periods17–20. The regularization of a user’s trajectory at a harmonized but coarser temporal resolution – i.e. by 
calculating monthly locations – necessarily causes some measurement error on the exact start and end dates of 
migration events as well as on their actual duration. It also implies that relatively short migration events with a 
duration that is comparable to the time resolution considered are potentially missed. For example, an individual 
can be seen at his home location from March 1 to March 16 of some year, then temporarily migrate for 28 days 
from March 17 to April 14, and return home from April 15 to the end of the month. Since the majority of days in 
March and April are spent at the home location, a frequency-based method using monthly locations will assign 
the user to that location in both months and the migration event will not be detected. Moreover, those methods 
provide a limited characterization of the direction of migration flows. Since migration events are simply iden-
tified as a location change, it is not possible to distinguish between a departure from and a return to a primary 
home location. Finally, the production of time-disaggregated temporary migration measures poses a number of 
methodological issues which have not been clearly addressed yet. Most notably, periods of inactivity necessarily 
induce some degree of uncertainty in the timing and duration of temporary migration events. This in turn cre-
ates situations where, for instance, the assignment of an identified migration departure date to a particular time 
period (e.g. a week or a month) can be ambiguous if the user is unobserved for some period of time before the 
departure date.

The dataset is a product of a thorough methodological framework meticulously designed to address a num-
ber of these issues. A migration event detection algorithm is developed based on a conceptualization of human 
mobility on three distinct temporal scales: the micro-, meso-, and macro-scales. Micro-movements refer to 
short-term mobility such as daily trips, commuting, or visits to cities. Meso-movements involve temporary 
changes in the usual place of residence and are the primary focus of this paper. Macro-movements are long-term 
changes in residence, i.e. permanent migration. The granularity of mobile phone data allows to capture move-
ments across all three scales, but tailored algorithmic methods are required to isolate movements at a specific 
scale. The proposed migration event detection algorithm builds on recent work by Chi et al.21, who demon-
strated how a clustering approach can enhance accuracy compared to traditional frequency-based methods. 
An important addition relies on the estimation of a primary residence location prior to detecting temporary 
migration events, which enables the clear characterization of migration flows’ direction by distinguishing depar-
tures from and returns to a home location. A set of well-defined algorithmic rules allows to aggregate user-level 
migration trajectories into consistent migration statistics at a desired spatio-temporal scale. They specifically 
account for issues related to sampling irregularity while maximizing the retention of information contained in 
phone-derived trajectories. Furthermore, the validation of migration estimates incorporates systematic methods 
and supplementary data sources to carefully assess the representativeness of a sample of phone users for gener-
ating migration statistics. In addition to the intrinsic value of the dataset, this suite of methodological tools thus 
constitutes a valuable outcome, as these can be readily adapted and applied to other digital trace datasets for 
systematically generating migration statistics in other contexts.

Methods
Call Detail Records.  We use Call Detail Records (CDR) from the main telecommunication company in 
Senegal (Sonatel) and spanning the period 2013 to 2015 as the primary input for the construction of temporary 
migration estimates. CDR are mobile phone metadata collected by telecommunication providers for billing pur-
poses. Each data record corresponds to an instance where a user made or received a call (or a text message), and 
is associated with a set of attributes that typically include: the phone number of the user, the starting time and 
date of the call and an identifier of the phone tower that processed the call. During the study period, Sonatel was 
largely dominating the mobile telephony market: in 2014, 88% of mobile phone users owned a Sonatel SIM card22.

A separate dataset provides the point coordinates of each phone tower. For the study period (2013-2015), 
the Sonatel network was comprised of 2,071 phone towers (Fig. 1, panel a). The set of phone tower coordinates 
is converted into a set of contiguous cells via a voronoi tesselation. Each voronoi cell coincides with the smallest 
area containing the point location of a device connecting to the corresponding phone tower or, equivalently, it is 
the approximate area covered by the phone tower. Phone towers are distributed unevenly across the country and 
their density typically increases with population density. Cells belonging to a single city are thus merged together 
for mainly two reasons. Firstly, temporary migration is conceptualized as movements across locations such as 
villages and cities but exclude intra-urban mobility. Secondly, equalizing the sample of cells in terms of their size 
helps mitigate systematic measurement errors. City polygons are defined based on the GHS Settlement Model 
2015 product (GHS-SMOD)23, which identifies 33 urban settlements in Senegal. Voronoi cells intersecting a 
city polygon are grouped together to form a city cell. However, some secondary urban areas are not captured by 
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GHS-SMOD, resulting in clusters of small cells. Clusters of phone towers that are within a distance of less than 
2km from each other are thus detected and the corresponding voronoi cells are merged. This process yields an 
additional 6 cities. A final network of 916 cells forms a partition of the country extent (Fig. 1, panel b) and is 
comprised of 39 urban cells and 877 rural cells.

To ensure privacy, CDR were pseudonymized by the mobile phone provider via a procedure that replaces 
phone numbers with unique identifiers. Distinct pseudonymization procedures were applied for the year 2013 
and the period 2014-2015. As a result, the unique identifier assigned to a single phone number differs between 
the two periods and both datasets are processed separately. The 2013 dataset has 9,386,171 unique identifiers and 
over 28.3 billion records, while the 2014-2015 dataset is comprised of 12,244,494 unique identifiers for over 67 
billion observations. To address concerns on the presence of bots and call centers in the sample, 102,313 (resp. 
98,086) identifiers that have over 100 records per day on average are removed from the 2013 (resp. 2014-2015) 
sample – they account for a total of over 3.5 billion (resp. 5.4 billion) records.

The pseudonymised CDR dataset was temporarily stored within a secure platform at the operator own prem-
ises. Preprocessing and spatiotemporal aggregation was carried out in the same platform by personnel of the 
network operator.

The detailed CDR data are proprietary and confidential. We obtained access to these data from Orange 
Sonatel within the framework of a collaborative project and with the agreement of the CDP (Senegalese data 
protection authority). Access to the full dataset can be requested from Orange on a contractual basis.

Selection of relevant subsets of users to derive robust migration statistics.  Phone users must 
satisfy minimal observational constraints – high observation duration, high frequency of observation, limited 
periods unobserved – in order to ensure a high level of accuracy in the migration detection procedure. On the 
other hand, higher observational constraints come at a cost of a lower statistical power since they decrease sam-
ple size. Additionally, excluding users based on sampling characteristics may exacerbate selection biases on the 
cross-section since phone usage patterns can vary with individual characteristics24 that potentially correlate with 
migration decisions. In this respect, previous studies have applied observational criteria aligned with their meas-
urement objectives17,19,20,25, but have largely disregarded the impact of those constraints on sample composi-
tion. Here, we quantify both the benefits of stricter observational constraints, i.e. reduced measurement errors 
in migration estimates, and their associated drawbacks, i.e. smaller sample sizes and selection biases. The corre-
sponding quantitative analyses are detailed in the Technical Validation section.

On that basis, we define two subsets of users with distinct observational constraints, each reflecting a delib-
erate trade-off between the benefits and costs of applying stricter observational criteria. The primary subset, 
denoted as subset A, is created by applying relatively strict observational constraints: users must be observed for 
a period covering at least 330 days, on at least 80% of those days, and with periods unobserved not exceeding 
15 days. The minimal length and frequency of observation are specifically designed to guarantee a baseline level 
of accuracy in determining users’ home location, detecting temporary migration events and estimating depar-
ture and return dates. On the other hand, imposing a maximum period unobserved helps mitigate the risk of 
measurement biases arising from non-random attrition, i.e. periods of inactivity precisely coinciding with users 
being in migration.

Fig. 1  Distribution of phone towers (panel a) and final voronoi cells (panel b) after aggregating cells within 
cities.
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We also define a secondary subset with lower observational requirements, denoted as subset B, associated 
with a lower level of accuracy in the migration detection procedure – but still reasonably high (see Technical 
Validation section) –, but a larger sample size and a lower degree of selection induced by the filtering procedure. 
Specifically, subset subset B includes users observed over a period of at least 250 days, with at least 50% of days 
observed, and a maximum period unobserved of 25 days.

The final dataset includes separate temporary migration estimates obtained from both subset A and subset B. 
Subset A serves as the primary sample of analysis, offering a high migration detection rate while maintaining a 
substantial sample size and minimal selection bias relative to the initial dataset. In contrast, migration estimates 
derived from subset B are intended to facilitate robustness checks and allow researchers to test the sensitivity of 
their results to variations in filtering parameters. The number of unique identifiers and total number of records 
for both subsets are summarized in Table 1. Subset A has 1,990,754 unique identifiers in 2013, 2,041,566 for the 
period 2014-2015, amounting to a total of 47.9 billion records. By contrast, subset B has 3,377,994 unique iden-
tifiers in 2013, 3,746,640 for the period 2014-2015, and a total of 61.6 billion records. For the period 2014-2015, 
the number of phone users in subset A and subset B corresponds to 26% and 47% of the adult population (i.e. 
aged 15 and older), respectively. Drawing from the sensitivity analysis of migration detection accuracy relative 
to observational constraints, we estimate that the algorithm detects at least 90% of migration events in subset A, 
and a reasonably high detection rate of 76% maintained in subset B.

Migration event detection.  The migration event detection algorithm is structured around a conceptual-
ization of human mobility on three distinct temporal scales, considering that individuals can move within a set 
of predefined locations at a fixed spatial resolution (e.g., at the voronoi level). First, short-term mobility events 
such as daily commutes, short trips to cities or weekend getaways are characterized by a short duration, typically 
a few days. They correspond to movements at a micro-scale. Second, temporary migration events correspond to 
an individual moving from a primary home location to a host area for a period of time going from a couple of 
weeks to several months before returning to his home location. Those are movements at a meso-scale and form 
the central focus of the paper. Third, permanent migration moves imply a long-term change in the usual place 
of residence and are defined as movements at a macro-scale. The time intervals associated with these mobility 
events are called micro-, meso-, and macro-segments, respectively. For any given individual observed over some 
period of time, the sets of micro-, meso- and macro-segments constitute three layers of mobility that define the 
micro-, meso- and macro-location of that individual at any point in time, where those locations are defined at the 
same spatial resolution. Note that, in this framework, the macro-location is thus considered as the usual place of 
residence (i.e. the home location). Given the length of observation and the frequency with which phone users are 
observed, a raw CDR trajectory generally allows to capture movements at all three scales. As a result, one of the 
main challenges of identifying segments at a higher scale (e.g., at a meso-scale) is to develop algorithmic methods 
that smooth out noisy patterns created by movements at lower scales (e.g., at the micro-scale).

With these concepts in mind, a four-step methodology is developed to identify temporary migration events 
in individual CDR trajectories. Firstly, a hierarchical frequency-based procedure is implemented to estimate 
hourly, daily and monthly locations for each user over his period of observation (Step 1). Then, a clustering 
method is applied to monthly locations to detect macro-segments, which allows to define the usual place(s) of 
residence over the observed period (Step 2). A similar clustering algorithm is applied to daily locations for the 
detection of meso-segments (Step 3). Finally, temporary migration events are identified by overlaying meso- and 
macro-segments: they correspond to meso-segments at a location which is not the usual place of residence (Step 
4). Several parameters are introduced throughout the detailed description of the data treatment methods below. 
For the reader’s convenience, these parameters are summarized in Table 2 along with their definition and values 
used to produce the final temporary migration dataset.

To effectively differentiate between long micro-segments and short meso-segments, as well as long 
meso-segments and short macro-segments, empirical criteria on the duration of mobility events are essential. In 
this respect, the detection algorithm considers meso-segments with a duration ranging from τ = days20meso

min  to 
days180meso

maxτ = . Consequently, macro-segments are naturally defined as periods of at least τmeso
max reflecting the 

continuous presence of a user at a single location at the macro scale. The relatively low value for meso
minτ  allows to 

capture short migration events, which are more prevalent and often overlooked in survey data compared to 
longer-term migration spells4. On the other hand, the upper-bound duration τmeso

max is constrained by users’ obser-
vation duration. Specifically, and as a basic heuristic, for a period of τmeso

max days of continuous presence of a user 
at some location to be identified as a temporary migration event, the user must be observed at least twice that 
duration. Indeed, this is the limit over which it is possible to determine that the user spent the majority of his 
time at a location that can effectively be identified as his primary home location, which then allows to correctly 
identify the period of meso

maxτ  days at a distinct location as a temporary migration event. An illustrative example is 
provided in Fig. 2, where a hypothetical user spends consecutive months at distinct locations A and B. 
Considering a value for meso

maxτ  equivalent to 6 months, Fig. 2 (panel (a)) shows that the full 13-month period of 
observation – i.e. more than twice meso

maxτ  – effectively allows to identify location A as the home location and to 

Subset Unique identifiers, 2013 Unique identifiers, 2014-2015 Total records

subset A 1,990,754 2,041,566 47,857,866,128

subset B 3,377,994 3,746,640 61,566,733,246

Table 1.  Number of unique identifiers and total number of records in subset A and subset B.
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Macro- and meso-segment detection

Parameter Description Value

τmeso
min Minimum duration imposed to classify a meso-segment as a temporary migration event 20 days

τmeso
max Maximum duration imposed to classify a meso-segment as a temporary migration event. It also sets the 

minimum duration for identifying macro-scale movements. 180 days

εgap
macro Maximum observation gaps allowed to group consecutive observed months at the same location in the first step 

of the macro-segment detection. 6 months

gap
mesoε

Maximum observation gap allowed for grouping consecutive observed days at the same location (first step of the 
meso-segment detection). It also sets the maximum duration permitted between consecutive groups at the same 
location for merging them (second step of the meso-segment detection).

7 days

φ
For any detected meso-segment, it is the minimum fraction of days observed at the identified meso-location 
required to validate the segment. This helps to limit cases where a meso-segment might capture frequent 
movements between multiple locations rather than a temporary migration event at a single location.

0.5

Aggregation into statistics

Parameter Description Value

εtol
Tolerance parameter setting the maximum acceptable time unobserved before (resp. after) a period t during 
which a meso-segment starts (resp. ends) in order to still consider that the user effectively departed (resp. 
returned) during t.

7 days

Σ Minimum overlap between a temporary migration segment and a period t to count the corresponding user as 
being in migration during t. 8 days

Table 2.  Parameters for macro- and meso-detection procedures and aggregation into migration statistics.

Fig. 2  Illustration of the importance of users’ observation duration for the choice of τmeso
max. Black bars represent 

the location of a hypothetical user over consecutive months. For simplicity, all months are assumed to have 30 
days and τmeso

max is assumed to be set to 180 days. Panel (a) depicts the full 13-month observation period, correctly 
identifying location A as the home location (the user spends 7 months out of 13 at location A) and detecting the 
6-month period at location B as a temporary migration event. Panel (b) assumes the last two months are 
unobserved, resulting in an 11-month dataset where location B appears to dominate, leading to its 
misidentification as the home location and a failure to identify the 6-month period at location B as a temporary 
migration event. This graphic illustration of a CDR-derived trajectory is inspired from Fig. 1 in Chi et al.21.
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detect a 6-month temporary migration event at location B. Figure 2 (panel (b)) considers a case where we 
observe the user for the first 11 months only, with the last two months being unobserved. Over this period of 
observation, the user spends the majority of months at location B that then defines his home location, so that the 
6-month period at location B cannot be identified as a temporary migration event. Given that we consider users 
with a minimum length of observation of approximately a year, we set τ = days180meso

max . However, parameters 
meso
minτ  and meso

maxτ  could be flexibly adjusted in future applications based on specific research needs and data 
constraints.

Step 1: hourly, daily, monthly locations.  First, some useful notations and definitions are in order. The studied 
area is partitioned into contiguous, non-overlapping spatial units that define the full set of potential locations 
where users can be observed, denoted by = ∈L �( )k k L[1; ], with L the total number of locations. In the present 
case, L is the set of voronoi cells introduced above so that L = 916. The raw CDR trajectory of a user i is denoted 
by x x x( , , , )t

i
t
i

t
i
Ti1 2

… , where each L∈xt
i  represents i’s observed location at timestamp t. Ti is i’s total number of 

CDR.
Consistent with conventional methodologies outlined in previous studies17–20,26, a hierarchical 

frequency-based method is implemented to determine hourly, daily, and monthly locations. For a user i, the 
hourly location xh d

i
,  for an hour h of day d is defined as the most frequently visited location during that one-hour 

time interval, denoted hd: 

x mode x t t t t h{ ( , , ), } (1)h d
i

t
i

T d, 1 i
= | ∈ … ∈

Hourly locations are then used to estimate a location for each day d, i.e. a daily location xd
i. The daily location 

xd
i  is defined as the most frequent hourly location during nighttime (6pm-8am) when available, and the most 

frequent hourly location during daytime otherwise. As is customary in the literature, night hours are preferred 
in order to mitigate the influence of daytime location shifts (e.g. commuting) and maximize the likelihood that 
the inferred location effectively coincides with the location where the corresponding user spends the night17,19,27. 
That said, we also use daytime locations when a nighttime location is not observed in order to limit the loss of 
information induced by this filtering procedure. More formally, the set of night hours for day d is denoted by 

∪= | ∈ … + … +N h d h d d d d d{( , ) ( , ) {(18, ), , (23, )} {(0, 1), , (7, 1)}}d  and the set of daytime hours is 
∣N h d h d d d{( , ) ( , ) {(8, ), , (17, )}}d = ∈ … . With these notations, nighttime and daytime locations for day d 

can be defined as: 

∣

∣

N

N








= ∈

= ∈

x mode x h d

x mode x h d

{ ( , ) }

{ ( , ) } (2)

d nighttime
i

h d
i

d

d dayttime
i

h d
i

d

, ,

, ,

 As a result, the estimated daily location xd
i can be written as: 

∣ N
=








∈ ≠ ∅
x

x x h d

x

, if { ( , ) }

, otherwise (3)
d
i d nighttime

i
h d
i

d

d daytime
i
, ,

,

 Of course, xd
i is undefined for days when neither nighttime nor daytime observations are available. For any user 

i, let = …d d{ , , }i
i

D
i

1 i
D  represent the set of Di days for which a daily location is determined.

Finally, monthly locations are calculated as the modal daily location over a month, with a minimum of 10 
days observed imposed in order to guarantee some degree of confidence in the estimated monthly location.

Step 2: Macro-segment detection.  Step 2 focuses on the identification of macro-segments, defined as periods of at 
least τmeso

max during which a user remains consistently present at a single location, while permitting short-term move-
ments (i.e. micro-segments) and temporary migration (i.e. meso-segments) at other locations. The macro-segment 
detection algorithm uses a clustering procedure on monthly locations, as the frequency-based approach outlined 
above serves as a simple method to smooth out micro-segments from a raw CDR trajectory. Then, the clustering 
technique follows the main principles outlined in Chi et al.’s21 methodology and proceeds in four steps: 

	 (i)	 Preliminary unique home location estimation: A default unique home location homei is estimated for each 
user i. It corresponds to the most frequently observed daily location over i’s period of observation: 

= ∈ Dhome mode x d{ } (4)i d
i

i

The following three steps are designed to identify potential macro-movements, defined as consecutive 
macro-segments at distinct locations. In most cases, where this process does not yield multiple macro-seg-
ments, the user is considered to have a single macro-segment at location homei spanning the entire 
observation period, defining his unique home location for that period.

	(ii)	 Detect contiguous monthly locations: Consecutive months at the same location are grouped together, 
allowing for observation gaps of at most gap

macroε  months. εgap
macro is set such that no movement at the mac-

ro-scale (i.e. a permanent migration) could occur during unobserved periods. gap
macroε  is thus set to 6 months 
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so that it coincides with the minimum duration defining a macro-segment (τ = 180meso
max  days). Note that, in 

practice, observation gaps are much shorter given the constraint imposed on the maximum period of 
non-observation. This process is illustrated in Fig. 3 (panel (a)) where a hypothetical user is observed 
across two locations, A and B. Groups of consecutive months at the same location are illustrated with dark 
frames.

	(iii)	 Merge monthly location groups: Groups of months at a single location are then merged when they are 
separated by one or more groups accounting for a total duration strictly less than τmeso

max. This process 
essentially groups home stays that may be interspersed with temporary migration spells. As explained in 
Chi et al.21, this clustering approach occasionally generates overlapping groups of monthly locations. This 
is illustrated in Fig. 3 (panel (b)).

	(iv)	 Resolve overlap: Next, the overlap between merged groups that may result from the previous step is 
resolved. First, merged groups with a duration strictly lower than τmeso

max are removed: as per the definition 
adopted, they cannot be macro-segments. For two consecutive overlapping groups, overlapping months 

Fig. 3  Illustration of the macro-segment detection procedure (step 2). Black bars represent monthly locations 
for a hypothetical user across two locations A and B. Panel (a) shows the grouping of consecutive months at the 
same location. Panel (b) illustrates the merging of monthly location groups when they are less than τmeso

max months 
apart, and how this process can generate overlap between the resulting groups. Panel (c) shows the final macro-
segments detected after those overlaps are resolved. This graphic illustration of a CDR-derived trajectory is 
inspired from Fig. 1 in Chi et al.21.
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are assigned to the longest group, as showed in the illustrative example provided in Fig. 3 (panel (b)). Start 
and end dates of merged groups are updated accordingly and merged groups which now have a duration 
strictly lower than meso

maxτ  are removed. To address rare cases of multiple overlaps, this procedure is iterated 
until no overlapping groups are left. For each user, the final merged groups form his set of detected 
macro-segments. Given relatively low rates of permanent migration and limitations due to the length of 
observation relative to τmeso

max, the vast majority of users end up with only one macro-segment detected. 
Those users are assigned the default unique home location homei determined in the preliminary step, 
which defines a unique macro-segment for the entire period of observation.

Step 3: Meso-segment detection.  A comparable approach is used to detect meso-segments, with an illustrative 
example provided in Fig. 4 to aid the reader’s understanding. The procedure can be decomposed in three steps: 

	 (i)	 Detect contiguous daily locations: Consecutive days at a single location are grouped together, allowing for 
observation gaps of at most gap

mesoε . While small values of gap
mesoε  may fail to smooth out short-mobility events, 

larger values are associated with significant overlap between groups of days detected. We rely on Chi et al.21 
to determine a reasonable value for εgap

meso and we set it to the optimal value of 7 days they infer from a 
cross-validation exercise. In the illustrative example shown in Fig. 4 (panel (a)), this process results in three 
groups of observations at location A and two at location B. Note that an observation gap can be observed 
within the first group. Since this gap is shorter than gap

mesoε , the consecutive days at location A before and 
after the gap are combined into a single group of daily locations.

	(ii)	 Merge daily location groups: Those groups of consecutive days at the same location are merged when they 
correspond to the same location and are less than gap

mesoε  days apart. For each user, this results in a set of 
intermediary meso-segments. In the example provided in Fig. 4 (panel (a)), the first two groups at location 
A are less than εgap

meso and are merged into a single intermediary meso-segment (Fig. 4, panel (b)). The same 
applies to the first two groups at location B. However, the second and third groups at location A are 
separated by a duration exceeding gap

mesoε , so they remain distinct segments.
Similar to Chi et al.21, we filter out meso-segments with a proportion of days at the identified location lower 
than some parameter φ, that we set to 0.5. This helps to limit cases where a meso-segment might capture 
frequent movements between multiple locations rather than a temporary migration event at a single 
location.

	(iii)	 Resolve overlap: As in the macro-segment detection procedure, merging groups of days at a single location 
can lead to some overlap between intermediary meso-segments (see Fig. 4, panel (b)). The overlap between 
pairs of consecutive segments is resolved by taking the middle of the overlap as the end date of the first 
segment and the following day as the start date of the second one (Fig. 4, panel (c)). This process is iterated 
until no overlap is left.

Each meso-segment is associated with four main attributes: a meso-location, the macro-location associated 
with the period covered by the segment, a minimum duration and a maximum duration. The meso-location is a 
direct output of the meso-segment detection procedure. The macro-location associated with the meso-segment 
is straightforward for users with a unique home location, which constitutes the majority of cases. For other 
users with multiple macro-segments across the period of observation, if a meso-segment is entirely covered by 
a macro-segment, it is assigned the corresponding macro-location. If a meso-segment overlaps between two 
macro-segments, it is assigned the macro-location of the macro-segment with the largest overlap. Finally, due 
to potential observation gaps before and after a meso-segment, accurately determining its exact duration is not 
always feasible. For that reason, for any segment Si of a user i, we define both a lower-bound duration minDura-
tion(Si) – referred to as the “observed duration” – and an upper-bound duration maxDuration(Si) – referred to as 
the “maximum duration”. As illustrated in Fig. 5, minDuration(Si) is calculated as the time elapsed between the 
segment’s identified start and end dates, while maxDuration(Si) represents the time between the last observed 
day before the segment and the first observed day after Si.

Step 4: Identification of migration events.  Temporary migration events are identified as meso-segments with a 
duration of at least τmeso

min , occurring at a destination that differs from the macro-location – which defines the 
home location at the time of the mobility event. For instance, in the illustration provided in Fig. 6, a hypothetical 
user has a unique home location (location A), and three meso-segments are detected (highlighted in red frames). 
They all have an observed duration of at least 20 days. Among them, only the second meso-segment exhibits a 
meso-location (location B) distinct from the macro-location (location A) and is therefore identified as a tempo-
rary migration event.

From user-level migration history to migration statistics.  Weighting scheme.  In conventional 
surveys, statistics on a target population are derived from a sample of individuals. The extrapolation from the 
sample to the population level is permitted by a meticulously defined sampling process. Individuals are selected 
from a sampling frame, which represents the target population, using a well-defined sampling design. However, 
mobile phone data simply provide a selected subset of the population, which composition is not governed by a 
similar sampling procedure. Because phone ownership and usage patterns vary among different demographic 
groups20,24,28, directly inferring population-level statistics from a sample of mobile phone data is inherently 
subject to sampling biases. The size of these biases ultimately depend on the magnitude of migration behavior 
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differentials between phone users and non-users, combined with the prominence of non-users within the target 
population. Moreover, since a statistical bias represents the difference between a sample-based statistic and the 
true value in a target population, its magnitude is contingent on how this target population is actually defined.

With this in mind, the selection issue in the production of phone-based migration statistics can be addressed 
in mainly two ways. First, the target population can be simply restricted to a minimal subset that the data effec-
tively represent. Second, some degree of extrapolation to a larger target population can be achieved by using 
observable characteristics of users to implement correction methods. Both approaches are considered in two 
distinct sets of migration estimates.

The first one is comprised of statistics directly derived from a given subset (i.e., subset A or subset B). They 
are referred to as the unweighted estimates. Operating under the minimal assumption that the migration out-
comes of users in the subset are comparable to those of the overall population of phone users, the sample of 
users is considered as representative of that population. Evidence supporting this assumption is provided in 
the Technical Validation section. As a result, the target population associated with the unweighted estimates is 

Fig. 4  Illustration of the meso-segment detection procedure (step 3). Black bars represent daily locations for a 
hypothetical user who is seen across two locations, A and B. Panel (a) shows the identification of groups of 
consecutive days at a single location. Panel (b) illustrates how these groups are merged when they are at most 

gap
mesoε  days apart. This process generates an overlap between the first two intermediary meso-segments. Panel (c) 

represents the final meso-segments detected after the overlap is resolved. This CDR trajectory representation is 
inspired from Fig. 1 in Chi et al.21.
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confined to the subset of mobile phone users, which constitutes a sizable portion of the adult population (see 
Fig. 7). According to the 2014 Listening to Senegal survey22, mobile phone users comprised 72% of the popula-
tion over 18, thus constituting at least 37% of the entire population.

A second set of migration estimates, called the weighted estimates, is produced with a correction method that 
allows to consider a broader target population, extending to the entire adult population (i.e. individuals aged 
15 and above). This choice is motivated by the fact that mobile phone ownership among individuals below 15 is 
indeed considered as negligible. This segment of the population is entirely absent from the mobile phone dataset, 
and their movements are unlikely to be captured. In fact, estimates of mobile phone ownership by age derived 
from the 2017 Demographic and Health Survey (DHS)29 effectively reveal a notable decrease among individu-
als aged between 20 and 15, from over 75% to 23%. Moreover, it is assumed that local differences in migration 
outcomes between users in the sample and individuals in the target population are small, which we refer to as 
the local representativeness assumption. Specifically, we define 39 urban strata – coinciding with the 39 identified 
cities in Senegal – and 185 rural strata, which correspond to the rural areas of third-level administrative units 
further segmented into areas with low population density (i.e., below the rural median) and high population 
density (i.e., above the rural median). A map showing these 224 strata is provided in Fig. 8. Differences in 
migration outcomes between users and the target population are then presumed limited within each individual 
stratum. In the Technical Validation section, we provide evidence supporting the notion that differences at a 
local level between phone users and the target population are effectively limited. Then, a correction method is 
implemented to neutralize imbalances in a key characteristic that is easily observable in CDR data: their home 

Fig. 5  Observed duration (minDuration(Si)) and maximum duration (maxDuration(Si)) of a meso-segment Si.

Fig. 6  Illustration of the identification of temporary migration events (step 4). Black bars represent daily 
locations for a hypothetical user who is seen across four locations: A, B, C and D. A well-behaved trajectory is 
assumed: the user has a unique home location (location A) and the meso-segment detection does not generate 
overlapping groups of daily locations. Red frames describe meso-segments detected with the clustering 
procedure on daily locations step 3. The second meso-segment is the only meso-segment detected at a non-
home location (B) and with a duration of at least meso

minτ . It is thus classified as a temporary migration segment. 
This CDR trajectory representation is inspired from Fig. 1 in Chi et al.21.
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location. Within each stratum, users are assigned a weight equal to the ratio of the stratum-level target popu-
lation over the total number of observed users identified as residing in that stratum. Moreover, we allow for 
weights to vary over time to accommodate the fluctuating number of users actually observed across time units. 
For any location ℓ and time period t, the value of the weight wℓt is then: 

�
�

�

=w
pop

N (5)
t

t

t
users

where popℓt is the size of the target population in location ℓ at time t and N t
users
�  is the total number of users resid-

ing in ℓ who are effectively observed during time period t.
Consequently, for any given time period, the sum of weights across users is equal to the total population aged 

15 and above. In short, the weighting scheme corrects for disparities in the population-to-users ratio across 
strata, which are primarily caused by variations in mobile phone ownership and usage. For instance, urban areas 
are generally over-represented in the sample: in subset A, 80% of users live in cities whereas those only account 
for 54% of the population aged 15 and above. As a result, under the local representativeness assumption, the 
weighted migration estimates are unbiased estimators for the true migration outcomes of the population aged 
15 and above.

Fig. 7  Scaled Venn diagram illustrating the relative sizes of various subsets within the Senegalese population, 
including Subset A and Subset B. The diagram reflects the following hierarchy: Subset A  ⊂  Subset B ⊂   
Sonatel Customers  ⊂  Mobile Phone Users  ⊂  Population Aged 15 and Above  ⊂  Total Population. The area of 
each disk is proportional to the size of the corresponding subset. Subset A and Subset B are represented in shades 
of green, while the broader population subsets are depicted in shades of blue.

Fig. 8  Strata used to design the weighting scheme employed in the weighted migration estimates. Each of the 39 
individual cities constitutes an urban stratum (in red). Black lines delineate groups of voronoi cells belonging to a 
single third-level administrative unit, where voronoi cells are assigned an administrative unit based on a maximum 
population criterion. The median population density across rural voronoi cells (1550 inh./km2) is used to define low- 
and high-density rural areas, represented in green and orange respectively. Each (administrative unit,rural density 
category) couple constitutes a rural stratum. Note that voronoi-level population estimates are obtained by overlaying 
voronoi polygons with the 2017 100m-resolution gridded population product from the WorldPop Research Group33.
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Note that the weighting scheme is designed as if the sample had been randomly drawn at the stratum-level, 
with the fraction of individuals selected from the target population varying across strata. However, in prac-
tice, other forces drive the underlying selection mechanism, and a limitation of the rectification method is 
its failure to account for these biases. For instance, the sample of users often disproportionately represents 
men, even within strata. Future research could enhance the proposed weighting scheme by incorporating 
socio-demographic information – either made available by the data provider or inferred from usage patterns30,31 
– in order to address these local sampling biases. Despite the acknowledged and documented issue of selection 
in CDR samples, the literature has generally overlooked concrete correction methods to address it for con-
structing representative mobility measures. Hence, we argue that the proposed weighting scheme and its under-
lying logic represent a significant improvement for producing near-representative migration statistics from a 
non-random sample of digital traces.

Regularizing unbalanced user-level trajectories.  The migration detection model furnishes the location history 
of each individual user in the form of successive meso-segments. Migration statistics are derived by aggregating 
these heterogeneous trajectories at a specific spatio-temporal resolution. For any given time unit t and pair of 
locations o and d, it is possible to calculate migrations flows during t, i.e. the number of migration departures 
from o to d and returns from d back to o, as well as the migration stock, which corresponds to the number of 
users residing in o being in migration at destination d during t. These calculations involve various methodolog-
ical challenges, which we address and resolve below.

Assigning a migration departure preceded (resp. return followed) by an observation gap to a specific time 
unit: First, we focus on the calculation of migration flows for any origin-destination pair and time unit. A user i 
residing in o is considered to have departed for migration to destination d at time t if he has a migration 
meso-segment at d that started during t. Similarly, user i returned from d to his home location o at time t if a 
migration segment at d ended during t. However, observational gaps imply some degree of uncertainty regard-
ing the actual start and end dates of meso-segments, thereby complicating the computation of migration flows 
in practice. Illustrative examples are shown in Fig. 9 considering a minimum duration of days20meso

minτ =  to 
define temporary migration events. In Fig. 9 (panel (a)), user i residing in o has a migration segment at destina-
tion d with an observed departure date within period t. However, i is unobserved in period t − 1, rendering it 
uncertain as to the specific period when the migration departure actually occurred (i.e. t, t − 1, or t − 2). 
Similarly, in Fig. 9 (panel (b)), a migration segment ends within period t but the observational gap that follows 
raises the possibility for user i to have returned home in period t + 1 or t + 2. These ambiguities are partly 
resolved by introducing a tolerance parameter ϵtol. In situations analogous to that of Fig. 9 (panel (a)), ϵtol sets the 

Fig. 9  Uncertainty in the calculation of migration flows by time unit.
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maximum acceptable time unobserved before the start of period t to still consider that user i departed for migra-
tion at d during period t. Likewise, for migration returns, ϵtol sets the maximum acceptable time unobserved 
after the period when the user is seen returning home in order to consider that the user effectively returned 
during that time period. The migration statistics disaggregated by half-month provided in the dataset are pro-
duced with ϵtol equal to 7 days.

Addressing uncertainty in segment duration for migration flow calculation: Then, uncertainty on the start 
and end dates of meso-segments naturally leads to some level of uncertainty on the actual duration of 
meso-segments, which gives raise to a second category of ambiguous cases. For example, in Fig. 9 (panel (c)), the 
start date of the segment at destination d unequivocally falls within period t, but the observed duration is lower 
than 20 days and the segment is not classified as a migration segment. Yet, the observational gap following the 
segment indicates that its actual duration may possibly be greater than 20 days, in which case user i should be 
regarded as having departed for migration at time t. Figure 9 (panel (d)) shows a similar situation where the 
return date is unambiguously assigned to period t but the uncertain duration induced by the observational gap 
preceding the segment complicates its classification as a migration segment. The migration estimates provided 
in the dataset are simply based on meso-segments with an observed duration (minDuration) greater than meso

minτ , 
which are referred to as high-confidence estimates. “Lower-confidence” estimates of migration departures and 
returns were also produced considering meso-segments with an observed duration lower than τmeso

min  but a maxi-
mum duration (maxDuration) greater than τmeso

min , similar to scenarios depicted in Fig. 9 (panel (c)–(d)). Many 
such configurations giving rise to ambiguous cases are possible, and an exhaustive set of algorithmic rules were 
implemented to address each one of them. In practice, due to the rather strict observational constraints imposed 
(as outlined in the Filtering procedure section), uncertainty on the actual duration of meso-segments remains 
minimal. As a result, these lower-confidence estimates show negligible difference with the primary 
high-confidence estimations, and the dataset therefore exclusively contains high-confidence estimates. 
Nonetheless, a comprehensive description of the algorithm’s treatment of various configurations, along with 
illustrative diagrams, is furnished in the Supplementary Material. This empowers researchers to apply the meth-
odology to alternative digital trace datasets not necessarily exhibiting comparably high sampling frequencies, 
while also aiding in the understanding of the code.

Determining a user’s migration status (i.e. in migration or not) for any given time unit: We determine aggre-
gation rules allowing to calculate migration stocks for each origin-destination pair and time unit. The migration 
stock from o to d during a time period t is calculated by aggregating the migration status of users, i.e. whether 
a user is in migration or not at time t. A user i is defined as being in migration at time t if that user exhibits a 
migration segment that overlaps time period t on at least Σ days (see Fig. 10, panel (a)). Migration stock esti-
mates provided in the dataset are generated with a value of Σ equal to 8 days. With this value, we simply impose 
that the overlap represents at least half the time unit since half-months have a duration of at most 16 days.

Addressing uncertainty in segment duration for migration stock calculation: Determining the migration 
status of user i for a time period t can also be subject to some ambiguities, arising primarily from uncertainty in 
the duration of meso-segments. For instance, in Fig. 10 (panel (b)), user i may or may not be in migration at 
destination d in period t, depending on his actual location during the following observation gap. The possibility 
exists that the segment has an actual duration greater than 20 days, in which case i should be considered as being 
in migration at time t. High-confidence estimates of migration stocks are derived exclusively from 
meso-segments with an observed duration greater than meso

minτ . Lower-confidence estimates were also calculated 
considering meso-segments with an observed duration below meso

minτ  but a maximum duration greater than τmeso
min . 

Again, these two sets of estimates show little difference in practice and only high-confidence estimates are 
included in the dataset, but a comprehensive description of algorithmic rules along with illustrative diagrams are 
provided in the Supplementary Material.

Calculating the total number of users observed for each time unit (used to calculate migration rates): Finally, 
estimating time-disaggregated migration rates requires some measures of the actual number of users observed 

Fig. 10  Determining the migration status of a user in period t.
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at any given time period t, serving as the denominator for such rates. Similar to the computation of migration 
flows and stock, the presence of observational gaps and attrition introduces variations in the number of users 
observed over time in each location. In essence, a user i is classified as “observed at time t” for a specific migra-
tion measure (i.e. departures, returns, or stock) if their trajectory allows to unambiguously determine his migra-
tion status at time t for that migration measure – e.g. i departed for migration during t or did not depart for 
migration during t. For example, in the scenario depicted in Fig. 9 (panel (a)) and assuming that the tolerance 
parameter is exceeded, the user would be deemed unobserved for the calculation of the departure rates at time 
period t. Again, all possible configurations in the trajectory of users are analyzed and all cases where users are 
considered as unobserved for measures of migration departures, returns and stock, are identified. Details on 
each of those cases along with illustrative diagrams are provided in the Supplementary Material, facilitating the 
understanding of the rules implemented as well as the corresponding code. It is important to highlight that the 
conditions defining the observational status of a user for a time period t depend on the migration measure con-
sidered, as well as the minimum migration duration threshold τmeso

min , the tolerance parameter ϵtol and the param-
eter Σ. Additionally, these numbers are also employed in the calculation of weights used to produce the weighted 
estimates.

Data Records
The dataset is available for download at a public figshare repository32. The complete dataset is broken down into 
multiple files as described above, with each file associated with a type of estimates (weighted or unweighted), a 
specific subset (A or B), and a minimum migration event duration threshold.

Migration estimates are provided at the (origin*destination*time)-level. The origin and destination loca-
tions considered are comprised of 39 cities and 112 rural areas of third-level administrative units (i.e., districts), 
defining the spatial resolution of the dataset. Note that all 39 cities are considered as individual spatial units. 
Therefore, the dataset contains city-level migration estimates rather than estimations at the level of urban areas 
for each district. Time units coincide with “half-months”, defined as the periods going from the 1st to the 15th, 
and from the 16th to the end of each month. Each year is thus comprised of 24 half-months and the dataset cov-
ers the period 2013–2015.

The full dataset is organized in 12 datasets. Each dataset provides either weighted or unweighted estimates 
and is derived from either subset A or subset B. In addition, for each of these four combinations, separate data-
sets provide estimates considering only migration events with a duration of at least 20, 30, or 60 days. A stand-
ard file name type_X_DDdays.csv.gz is used to uniquely identify each dataset, with type being either 
weighted or unweighted, X ∈ {A,B} denotes the subset from which migration estimates are derived, and 
DD is either 20, 30, or 60. For instance, the file weighted_A_20days.csv.gz contains weighted esti-
mates derived from subset A considering temporary migration events of at least 20 days.

Each dataset contains time series of migration departures, migration returns, and migration stock, both in 
absolute terms and as a fraction of the total number of users observed at origin. These metrics are provided for 
each origin-destination pair over the period from 2013 to 2015, with time units defined as half-month inter-
vals. Note that half-month periods that coincide with the start and end of each CDR dataset (i.e., the 2013 and 
2014-2015 datasets) are excluded from the final estimates due to increased uncertainty at the boundaries of the 
observation periods. For example, considering migration events of at least 20 days, all users seen at a non-home 
location from January 1, 2013 to at least January 8, 2013 and returning to their home location before January 
20, 2013 are not classified as migrants during the first half of January. However, if they had departed to the 
non-home location before December 31, 2012, they should indeed be identified as migrants. The extent of these 
high-uncertainty periods at the edges of CDR datasets depends on the minimum duration used to define tem-
porary migration events. Therefore, for migration estimates based on events of at least 20 days, we only exclude 
estimates for the first and last half-months of 2013, the first half-month of 2014 and the last half-month of 2015. 
For events of at least 30 days, estimates for the first and last two half-months of 2013, the first two half-months 
of 2014 and the last two half-months of 2015 are excluded. For events of at least 60 days, we exclude estimates 
for the first and last four half-months of 2013, the first four half-months of 2014, and the last two half-months of 
2015. All variable names along with detailed descriptions are provided in Table 3.

Weighted estimates incorporate population dynamics during the 2013–2015 period, meaning that target pop-
ulation values at the voronoi level (i.e., individuals aged 15 and above) vary over time. The calculation of target 
population estimates for each voronoi cell and half-month period involves four steps. First, a baseline popula-
tion distribution is established by overlaying voronoi polygons with the 100m-resolution gridded population 
product from the WorldPop Research Group33. Second, population values for the midpoint of the study period 
(i.e. the first half of June 2014) are obtained by applying this distribution to the 2014 total population. Third, 
department-level estimates, broken down by rural and urban zones, of the fraction of the population aged 15 
and above from the 2013 census34 are applied to calculate voronoi-level estimates of the target population for the 
first half of June 2014. Fourth, using annual population growth projections by region and zone for 2013–201534, 
half-monthly population growth rates are determined and applied to estimate the target population for each 
voronoi cell and half-month period.

A shapefile delineating the boundaries of all spatial units used in the dataset (i.e., origin and destination loca-
tions) is provided in the figshare repository. This allows users to map temporary migration estimates and com-
bine the dataset with other spatial data, such as climate or land use information. The spatial units are constructed 
from the voronoi cells showed in Fig. 1 (panel (b)). Cells classified as urban form individual spatial units. On the 
other hand, rural cells are assigned to a unique district based on a maximum population criterion and cells that 
belong to a unique district are grouped. This process results in 112 rural locations and 39 urban locations (i.e. 
cities) for a total of 151 distinct locations. The shapefile is provided as a GeoPackage file (spatial_units_
SciData.gpkg) with a single layer. The attribute table has three columns: i) id is a unique identifier for each 
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spatial unit, ii) name gives the name of the corresponding spatial unit, which is either the city name or a name of 
the form NAME-rural where NAME is the name of the corresponding district, and iii) zone_category indicates 
whether the spatial unit is classified as rural or urban.

Technical Validation
Migration event detection accuracy.  Observational requirements for the measure of human mobil-
ity necessarily depend on the type of movements one aims to capture. Broadly speaking, measuring long-term 
changes in the place of residence requires extended periods of observation (e.g. several years) with modest sam-
pling frequencies, while capturing commuting movements asks for high sampling frequencies (e.g. multiple 
observations per day) over potentially shorter observation periods. Minimal sampling characteristics for the 
measure of temporary migration movements is qualitatively somewhere in between. The proposed migration 
detection algorithm essentially requires that users are seen often enough during a sufficiently long period of time 
in order to be able to (i) confidently identify a home location and (ii) detect the temporary changes in the usual 
location observed – that we have called “meso-movements”. We investigate this issue in quantitative terms by con-
ducting a sensitivity analysis of the proposed migration detection algorithm with respect to users’ observational 
characteristics. More specifically, we evaluate the impact of the length of time a user is observed and the fraction 
of days with observations (i.e. the frequency of observation) on the level of accuracy associated with both the 
prediction of home locations and the detection of temporary migration events. This contributes to the validation 
of the choice of filtering parameters considered to define subset A and subset B.

To achieve this, we consider a benchmark subset of users selected from the entire 2013 dataset, who meet 
stringent observational constraints: they are observed for at least 360 days and on at least 95% of days (195,070 
such users satisfy those constraints). To ensure computational feasibility, a random subset of 10,000 users is 
selected among those with a unique home location identified and at least one migration event of at least 20 days 
detected. The strict observational constraints imposed to select this subset ensure that the migration detection 
outputs accurately represent (i) the users’ true home locations and (ii) their actual temporary migration move-
ments. Subsequently, we impose increasingly stringent observational constraints on these users and evaluate 
how the accuracy of the migration detection procedure declines as a result. Specifically, we consider values for 
the duration of observation varying between 30 and 360 days, and fractions of days observed ranging from 0.1 
to 0.95. For each pair of values, we select a subset of observations for each user that meets the corresponding 
constraints. For instance, consider a user observed for 360 days on 95% of days and observational constraints 
set to 360 days and 0.8 respectively, the subset is formed by randomly removing 15% of observations from the 
initial trajectory. We re-apply the detection algorithm to these subsets of observations and compare the outputs 
with those obtained with the full trajectories to assess the model’s accuracy under the specified observational 
constraints. This process is repeated for various pairs of values within the range specified above, which allows to 
appreciate the overall sensitivity of the detection model to observational characteristics.

First, we evaluate the impact of the length of observation Δ and frequency of observation Ω (henceforth 
also referred to as the “density” of the trajectory) on the accuracy of home location predictions. For each set of 
parameters (Δ, Ω), the model accuracy is simply defined as the fraction of users with a correctly predicted home 
location. Figure 11 (panel (a)) shows estimates of the model accuracy for lengths of observation ranging between 
30 and 360 days and for different values of Ω. It is clear that the density of trajectories Ω has little incidence 
on the accuracy of home location predictions. For instance, even with only 10% of days observed, the level of 
accuracy continues to exceed 90% for lengths of observation of at least 290 days. More generally, for any given 
length of observation, the level of accuracy only varies by a few percentage points with values of Ω ranging from 
0.1 to 0.9. On the other hand, accuracy seems to increase linearly with the length of observation. For Ω = 0.9, it 
increases from 73% to 99% when the length of observation imposed increases from 30 to 360 days.

Variable name Description

N_depart Number of migration departures

N_return Number of migration returns

N_migrants Number of individuals in migration, i.e. the stock of migrants

N_users_observed_depart Total number of users residing in origin o observed at time t, for departure counts

N_users_observed_return Total number of users residing in origin o observed at time t, for return counts

N_users_observed_stock Total number of users residing in origin o observed at time t, for migration stock

rate_depart Rate of departures calculated as N depart
N users observed depart

_
_ _ _

rate_return Rate of migration returns calculated as N return
N users observed return

_
_ _ _

rate_migrants Migration stock rate calculated as N migrants
N users observed stock

_
_ _ _

Table 3.  Description of variables provided in the dataset. Each row of the dataset provides measures of 
temporary migration from an origin o, to a destination d, for a half-month denoted by t. In datasets providing 
weighted estimates, variable names include the suffix “_adj” to indicate that variables were adjusted with the 
weighting scheme outlined in the Methods section (e.g. N_depart_adj instead of N_depart). Note that, by 
construction, the “adjusted” number of users observed provided in weighted estimates datasets coincides with 
the target population for the corresponding origin location.
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Second, we focus on the impact of the frequency of observation Ω on the accuracy of the migration detection 
model, holding Δ fixed. Note that looking at the impact of Δ on the ability of the algorithm to detect migration 
events is not particularly relevant. Shorter lengths of observation simply imply missing migration events occur-
ring during the period unobserved. Here, the model accuracy for any given value of Ω is defined as the fraction 
of real migration segments (i.e. those detected in the benchmark subset) that are effectively identified in subsets 
of CDR of density Ω. Removing observations from a full trajectory can lead to migration events being still 
detected although with slightly different start and end dates. Therefore, a real migration segment is considered 
as identified in a subset of density Ω if a migration segment overlapping at least half the real migration segment 
is detected in this subset of CDR. Results for Δ set to 360 days and Ω varying from 0.1 to 0.95 are provided in 
Fig. 11 (panel (b)). Unsurprisingly, the frequency of observation has a significant impact on the accuracy of the 
migration detection model. From 95% of migration events detected with a density of 0.9, it decreases to as low 
as 4% when the fraction of days observed is equal to 0.1. The convex shape of the relationship indicates that the 
level of accuracy starts to deteriorates sharply when Ω falls below approximately 0.5, and drops below 50% for 
values of Ω that are less than 0.3. On the other hand, densities greater than 0.8 allow to sustain a high level of 
accuracy beyond 90%.

The accuracy of both home location estimation and migration event detection is then assessed for the obser-
vational constraints associated with subset A and subset B respectively. Results are summarized in Table 4. Home 
detection accuracy is high for both subsets: 92% for subset A and 98% for subset B. We estimate that at least 90% 
of migration events are effectively detected by the algorithm in subset A. As expected, this figure is lower for 
subset B but still relatively high at 76%.

Validity of unweighted estimates: Are Sonatel users representative of the population of phone 
users?  Under the assumption that users in subset A and subset B have temporary migration outcomes that 
are comparable to those of the overall population of mobile phone users, unweighted estimates are considered as 
representative of that population.

Given the absence of CDR data for the entire population of mobile phone users, conducting a direct compar-
ison of migration outcomes between our subsets of users and the broader population of mobile phone users is 
unfeasible. Likewise, without personal information available in CDR data, we cannot compare the characteris-
tics of users in subset A and subset B with those of the population phone users. However, leveraging ICT Access 
Surveys35 data, we perform statistical tests to at least evaluate whether Sonatel users differ from the population 
of phone users across various observable characteristics, including gender, age, education, zone of residence and 
wealth. Results are showed in Table 5. Overall, the findings suggest that Sonatel users are generally comparable 
to the broader population of phone users, particularly in terms of characteristics potentially associated with 
temporary migration determinants (e.g. assets ownership, wealth, gender). One notable difference is that Sonatel 
users tend to be slightly more urban than users of other operators (57.4% against 50.5%). Nevertheless, the exist-
ence of potential differences between Sonatel users and users from other operators remains a minor concern in 
the context of Senegal. Indeed, as illustrated in Fig. 7, the market was largely dominated by Sonatel during the 
study period: over 88% of mobile phone users have a Sonatel SIM card and 77% report Sonatel as their main 
provider22. However, this issue may assume greater significance in settings where the telephony market is more 
fragmented.

Validity of weighted estimates: local representativeness assumption and selection on home 
locations.  The local representativeness assumption crucially underpins the production of the weighted esti-
mates, allowing to extend the target population to the population aged 15 and above. This assumption posits 
that differences in temporary migration outcomes between users in the sample and the target population remain 
limited. Although this cannot be directly verified in practice due to the absence of data on temporary movements, 

Fig. 11  Model accuracy for home location predictions as a function of the length and frequency of observation 
(panel (a)) and accuracy of the migration detection algorithm as a function of the fraction of days observed 
(panel (b)).
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we adopt a second-best approach and conduct two distinct exercises that help evaluate the validity of the local 
representativeness assumption. First, we use secondary survey data to compare mobile phone users with the adult 
population at large at a local level along a number of observable characteristics. Second, we compare the specific 
phone users in the selected subsets with the overall population with respect to the only characteristic that is read-
ily observable with CDR data, i.e. the home location.

In the first validation exercise, we leverage data from the 2017 Senegal Demographic and Health Survey 
(DHS)29, which focuses on individuals aged 15 and above. The survey provides information on individuals’ 
mobile phone ownership along with various characteristics such as wealth, occupation, financial inclusion, and 
education level. To assess the local representativeness assumption, we employ statistical tests (t-tests) to examine 
differences between phone users and the overall population across these dimensions. These tests are conducted 
separately for each zone (rural/urban) within the 14 regions of Senegal to ensure consistency with the repre-
sentativeness level of the DHS. Results are illustrated for the region of Kaolack in Table 6 while results for the 13 
other regions are left in the Supplementary Material. The most notable observation is that very few coefficients 
exhibit statistical significance, a pattern that we consistently observe across all regions and zones. In particular, 
phone users are generally found to be slightly wealthier compared to the overall population, but those differences 
are never significant, even at a 10% level. Similarly, across specific regions and zones, phone users generally tend 
to have better access to amenities like drinking water, sanitation, and electricity, higher levels of education, lower 
unemployment rates, and greater participation in the agricultural sector. Again, these disparities are minor 
and statistically insignificant. These results tend to confirm that, at a local level, phone users and the broader 
adult population are statistically indistinguishable along numerous key dimensions. Assuming some degree of 
correlation between those characteristics and mobility choices, this supports the notion that, at a local level, 
temporary migration outcomes of phone users do not significantly differ from those of the adult population as a 
whole. Two exceptions are worth highlighting. Unsurprisingly, phone users are older than the overall population 
aged 15 and above given lower ownership rates in the 15-20 age category. Most notably, a clear gender divide in 
mobile phone ownership exists and phone users are disproportionately more male, especially in rural areas. In 
rural Kaolack, 56% of phone users are male against 48% in the population aged 15 and above and this difference 
is statistically significant at a 5% level. Comparable differences are found in 11 of the 14 rural regions of Senegal. 
Therefore, a plausible constraint on the validity of the local representativeness assumption is that mobile phone 
data under-represent women and younger individuals.

Secondly, we directly compare the phone users of our sample with the adult population based on a character-
istic that is easily observable from CDR data: their residence location. Figure 12 (panel (a)) shows the number 
of users by voronoi cell against the population aged 15 and above, revealing a positive but imperfect correlation 
for both subset A and subset B. In Fig. 12 (panel (b)), we calculate the distribution of phone users in subset A and 
subset B across three categories of locations: Dakar, other urban locations, and rural locations. Comparing this 
with the distribution of the adult population, we see that a disproportionately high fraction of users are in Dakar, 
while a lower fraction are in rural areas compared to the overall adult population.

To go further, we explicitly investigate the relationship between the distribution of users and population 
density. Voronoi cells are ordered by population density and grouped into ten bins each accounting for 10% of 
the population aged 15 and above. The degree of selection of home locations with respect to population density 
is then assessed by calculating the distribution of users’ home locations across these density bins. Note that in 

subset A subset B

Home detection accuracy 98% 92%

Migration event detection accuracy 90% 76%

Table 4.  Estimated accuracy of home location estimation and temporary migration event detection in subset A 
and subset B.

Sonatel users All users Diff.

(1) (2) (1)–(2)

Male dummy 0.559 0.554 0.005

Age 37.237 36.975 0.262

Years of education 6.785 6.101 0.685***

Urban dummy 0.574 0.505 0.07***

Has electricity 0.910 0.897 0.013

Has piped water 0.869 0.847 0.022

Has a fridge 0.447 0.415 0.033**

Has a radio 0.710 0.726 − 0.016

Has a TV 0.761 0.743 0.018

Richest quintile dummy 0.170 0.170 0

Poorest quintile dummy 0.178 0.196 − 0.019

Table 5.  Comparison of Sonatel users with the overall population of phone users. Statistics were derived from 
the individual-level Access Survey dataset for Senegal conducted by Research ICT Africa35.
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the absence of selection, the fraction of users found in each bin should match the share of the population it hosts 
(i.e. 10%). Results are showed in Fig. 13 (panel (a)) and a clear pattern of selection emerges where the fraction 
of users increases with population density, for both subset A and subset B. In short, although phone users are 
broadly similar to the overall population aged 15 and above locally (local representativeness), our samples tend 
to over-represent individuals residing in denser areas. This analysis highlights the significance of this selec-
tion pattern and underscores the relevance of the weighting scheme described in the Methods section, which 
precisely addresses these imbalances in the mobile phone data sample composition. An alternative way to see 
this is provided in Fig. 13 (panel (b)) that represents the population-to-users ratio against population density, 
calculated at the level of strata used as weighting units and defined in the Methods section. The graph reveals 
a negative correlation indicating that denser areas are associated with higher numbers of users relative to the 
local population (i.e. lower population-to-users ratios). The proposed weighting scheme allows to neutralize this 
systematic bias by making the ratio of the adult population over the (weighted) number of users constant and 
equal to 1 across strata.

Validation of filtering parameters: their impact on sample size and selection on home loca-
tion.  The subsets used to compute temporary migration statistics (i.e. subset A and subset B) are constructed 
via a filtering procedure detailed in the Methods section. This involves imposing minimal constraints on users’ 
frequency and length of observation, as well as the maximum time non-observed, primarily to ensure accuracy 
in migration detection outcomes. However, these higher observational constraints also result in smaller sample 
sizes and may exacerbate selection biases on the cross-section. In the first sub-section of the Technical Validation, 
we perform a quantitative analysis to examine the relationship between migration detection model accuracy and 
observational constraints. This analysis supports the notion that the filtering parameters used to construct subset 
A and subset B allow to maintain high levels of accuracy. In this sub-section, we validate the choice of filtering 
parameters by quantifying the costs associated with higher observational constraints, specifically in terms of 
reduced sample size and increased selection bias with respect to the distribution of home locations across space.

We first examine the impact of our three main observational constraints (frequency of observation, length 
of observation, maximum time non-observed) on sample size. To facilitate the visualization of the results, we 
evaluate the joint impact of any pair of constraints while holding the third fixed. Figure 14 (panel (a)) shows a 
three-dimensional surface representing the number of users remaining in a subset as a function of the minimal 
frequency (Ω) and length of observation (Δ) imposed. While increasing the constraint on Δ has a negative but 
limited impact on sample size, the frequency of observation has a much larger impact on sample size. Then, 
Fig. 14 (panel (b)) represents the sample size as a function of the minimal length of observation and the maxi-
mum observational gap allowed. Consistent with Fig. 14 (panel (a)), the constraint on the length of observation 
has a relatively minor impact on sample size. However, a clear non-linear impact of the maximum observa-
tional gap allowed is observed, with sample size decreasing sharply for values below 10–15 days. Finally, Fig. 14 
(panel (c)) provides results consistent with those of Fig. 14 (panel (a)–(b)), where the minimum fraction of days 

Urban Rural

Phone users All Diff. Phone users All Diff.

(1) (2) (1)–(2) (3) (4) (3)–(4)

wealth group: richest 0.095 0.085 0.01 0.096 0.087 0.01

wealth group: richer 0.200 0.184 0.016 0.263 0.223 0.04

wealth group: middle 0.189 0.192 − 0.003 0.290 0.291 − 0.001

wealth group: poorer 0.255 0.262 − 0.007 0.280 0.295 − 0.015

wealth group: poorest 0.261 0.277 − 0.016 0.071 0.104 − 0.033

Years of education 5.439 5.272 0.167 3.074 2.812 0.262

Age 30.371 28.446 1.925** 31.408 29.337 2.071*

Male 0.468 0.451 0.017 0.564 0.476 0.088**

Married 0.525 0.461 0.064* 0.693 0.621 0.072

Has a bank account 0.226 0.179 0.047 0.150 0.090 0.06

occupation: not working 0.302 0.343 − 0.042 0.200 0.213 − 0.013

occupation: agriculture 0.037 0.036 0.001 0.530 0.548 − 0.019

occupation: sales 0.253 0.237 0.016 0.087 0.071 0.016

occupation: household/domestic 0.033 0.044 − 0.01 0.013 0.012 0.001

occupation: unskilled 0.138 0.148 − 0.01 0.099 0.097 0.002

Household size 10.462 10.474 − 0.012 14.009 13.704 0.305

Water access 0.697 0.688 0.009 0.518 0.489 0.03

Access to sanitation 0.845 0.825 0.02 0.364 0.323 0.042

Electricity 0.844 0.836 0.008 0.320 0.282 0.037

Table 6.  Differences in characteristics between phone users and the population, Kaolack. Statistics were 
derived from the Senegal 2017 DHS men and women individual datasets. Results for all other regions are left in 
the Supplementary Material.
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observed has a significant marginal impact on sample size while imposing a maximum observational gap lower 
than 10–15 days causes significant losses in sample size.

Then, we evaluate the impact of filtering parameters on the pattern of selection toward denser areas docu-
mented above. Specifically, we first estimate the impact of filtering parameters on the bias toward Dakar in the 

Fig. 12  Comparison of the distribution of users across locations with the distribution of the population aged 15 
and above. Panel (a) shows the logged number of users by voronoi cell in the 2013 dataset against the population 
aged 15 and above. The voronoi-level population aged 15 and above is estimated by combining census-based 
department-level estimations of the fraction of the population aged 15 and above36 with voronoi-level total 
population estimates obtained by overlaying voronoi polygons with the 2017 100m-resolution gridded 
population product from the WorldPop Research Group33. Panel (b) shows the distribution of users in subset 
A and subset B in the 2013 dataset across three categories of voronoi cells: Dakar, other cells classified as urban, 
and cells classified as rural. The figure also provides the distribution of the target population aged 15 and above 
across these categories for comparison.

Fig. 13  Systematic bias of home locations toward denser areas. Panel (a) represents the distribution of phone 
users in the 2013 dataset across groups of cells defined based on population density deciles. Dakar is excluded 
from this analysis as it accounts for over 20% of the population and would cover the top two density bins. 
In any case, the selection towards Dakar is already clear in Fig. 12 (panel (b)). Panel (b) shows the ratio of 
the population aged 15 and above over the number of users at the stratum-level in the 2013 dataset against 
population density.
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sample composition. We define this bias for any given subset as the ratio of the fraction of users with an inferred 
home location in Dakar over the fraction of the population aged 15 and above effectively residing in Dakar. For 
example, a value of 2 would indicate that the sample contains twice as many users in Dakar than there would 
be if the sample had been randomly drawn from the target population. In the spirit of Fig. 14, we represent in 
Fig. 15 the value of this bias as a function of any pair of constraints, holding the third parameter fixed. Figure 15 
(panel (a)–(b)) clearly shows that selecting users with a higher length of observation has practically no impact 
on the bias toward Dakar. In contrast, Fig. 15 (panel (a)) and (panel (c)) reveal that augmenting the minimum 
frequency of observation exacerbates the bias. For instance, regardless of the minimum length of observation, 
the bias increases from about 1.6 for a minimum fraction of days of 0.1 to 2-2.2 when this constraint is raised 
to 0.9 (Fig. 15, panel (a)). Similar to the impact of filtering parameters on sample size (Fig. 14), reducing the 
maximum time unobserved increases the bias only for values below a threshold of about 10–15 days (Fig. 15, 
panel (b)–(c)). Notably, this impact diminishes significantly when higher values for the minimal frequency of 
observation are considered, specifically for a minimum fraction of days observed around 0.8 and above (Fig. 15, 
panel (c)). Secondly, we assess the degree of selection induced by filtering parameters on the composition of the 
rest of the sample. To do this, we calculate the distribution of phone users across groups of cells defined based on 
population density deciles (as in Fig. 13, panel (a)), for different values of filtering parameters. Figure 16 (panel 

Fig. 14  Impact of filtering parameters on the number of users left in a subset. Panel (a) shows three-
dimensional surface representing the number of users in the 2013 dataset as a function of the minimal length 
and frequency of observation imposed, with the maximum time non-observed set to 100 days. Panel (b) 
represents the number of users as a function of the length of observation and the maximum time non-observed, 
setting the fraction of days with observations to 0.5. Panel (c) shows the number of users as a function of 
the fraction of days with observations and the maximum time non-observed, with the minimal length of 
observation set to 110 days.
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(a)–(c)) shows how these distributions vary with the minimum length of observation, the minimum frequency 
of observation, and the maximum time non-observed, respectively. Once again, increasing the minimum length 
of observation has minimal impact on the distribution of users across density bins (Fig. 16, panel (a)), and 
reducing the maximum time non-observed allowed slightly exacerbates the bias toward denser areas only for 
values around 10 days and below. Finally, the frequency of observation is the main parameter influencing the 
bias in the distribution of users across density bins. As illustrated in Fig. 16 (panel (b)), increasing the minimum 
fraction of days observed to select a subset magnifies the tilt toward categories of denser cells. For instance, 
increasing the fraction of days observed from 0.1 to 0.9 decreases the fraction of users in the category of least 
dense cells (bin 1) from 8% to 5% and increases the share of users in the densest areas (bin 10) from 19% to 26%.

In summary, the cost of the filtering procedure in terms of reduced sample size and increased selection is pri-
marily driven by the frequency of observation parameter, which is also the main determinant of the migration 
detection model accuracy. Moreover, it is worth noting that the impact on selection is clear but largely contained. 
Imposing a high minimum fraction of days with observations induces further distortions toward Dakar and 
denser areas, but the resulting subsets still provide wide coverage with consistent fractions of users found in the 

Fig. 15  Impact of filtering parameters on the bias of home locations toward Dakar. “Dakar bias” is defined 
for any given subset of users as the ratio between the fraction of users in the subset residing in Dakar and the 
fraction of individuals effectively living in Dakar in the target population. Panel (a) shows a three-dimensional 
surface representing Dakar bias in subsets of the 2013 dataset as a function of the minimum length and 
frequency of observation imposed, with the maximum time non-observed set to 100 days. Panel (b) represents 
Dakar bias as a function of the length of observation and the maximum time non-observed, setting the 
fraction of days with observations to 0.5. Panel (c) shows Dakar bias as a function of the fraction of days with 
observations and the maximum time non-observed, with the minimal length of observation set to 110 days.
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most remote locations. Consequently, the minimum fraction of days observed of 0.8 used to construct subset A 
is viewed as a credible tradeoff allowing to achieve a high level of accuracy while avoiding a significant reduction 
in sample size and an unreasonable distortion in sample composition. The value used for the construction of 
subset B (0.5) is thought of as resulting from a tradeoff assigning relatively more weight to the cost on selection 
and less to the accuracy of the migration detection model. On the other hand, the constraint on the length of 
observation remains quite stringent for both subsets since it has only a limited impact on sample size and selec-
tion. Finally, we do not consider values below 15 days for the maximum time non-observed given the potentially 
large impact implied on sample size and selection. Also, with temporary migration events being defined with a 
minimum duration of 20 days, constraining observational gaps to a maximum of 15–25 days is in fact sufficient 
to avoid cases of non-random attrition where users would be non-observed precisely while in migration.

It is essential to note that the distortion in sample composition caused by the filtering procedure is more 
concerning for unweighted estimates. The observed pattern of selection leads to a small over-representation of 
individuals in cities and denser areas and therefore tends to move the sample away from the target population 
of mobile phone users. On the other hand, weighted estimates systematically address discrepancies between the 
distribution of users’ home locations in a given subset and the distribution of the target population.

Furthermore, it is crucial to acknowledge that without information on users’ socio-economic characteristics, 
we cannot fully assess the impact of filtering parameters on the validity of the local representativeness assump-
tion. Future research could delve into this aspect. Nevertheless, given the modest selection patterns observed 
in the distribution of home locations, there are reasons to believe that selection at a local level induced by the 
filtering procedure remains limited.

Fig. 16  Impact of filtering parameters on the bias of home locations toward denser areas. Panel (a) represents 
the distribution of non-Dakar phone users across population density bins, for subsets of the 2013 dataset 
associated with different values of the minimum length of observation, and a minimum fraction of days 
observed and maximum time non-observed fixed and set equal to 0.5 and 100 days respectively. As in Fig. 13 
(panel (a)), each bin is a group of cells with similar population density that account for 10% of the non-Dakar 
population aged 15 and above. Similarly, panel (b) shows the distribution of non-Dakar phone users across 
population density bins, for subsets of the 2013 dataset associated with different values of the minimum fraction 
of days observed, and a length of observation and maximum time non-observed equal to 210 days and 100 
days respectively. Panel (c) shows the distribution of non-Dakar phone users across population density bins, for 
subsets of the 2013 dataset associated with different values of the maximum time non-observed, and a length of 
observation and a fraction of days observed equal to 210 days and 0.5 respectively.
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Usage Notes
The temporary migration estimates in the dataset can be aggregated to coarser spatial and temporal resolutions, 
but users should be aware of certain limitations. Absolute migration flows (e.g., the number of departures and 
returns) can be summed without restriction. For instance, to find the total number of migration departures in 
Senegal for 2013, one can simply add up the departures across all origin-destination pairs and half-months for 
that year. However, computing a departure rate is not feasible since the denominator – i.e. the number of users 
observed – cannot be directly derived from the dataset. This calculation would require knowing the number 
of unique users observed throughout the entire year 2013, specifically those with CDR trajectories allowing 
to detect any migration movements if they effectively occurred. Then, migration stock estimates can be aggre-
gated spatially without restriction for any given half-month period. For example, the total stock of temporary 
migrants to Dakar in the first half of August 2013 is obtained by adding up the stock of migrants to Dakar across 
all origin locations for that particular half-month. Nonetheless, aggregating migration stocks over time periods 
longer than the minimum duration defined for temporary migration events may not always be meaningful. 
Alternative metrics could be considered to provide temporary migration measures over extended periods of 
time. For instance, one could calculate the number of unique users with at least one migration event of at least 20 
days having occurred during 2013. Such metrics may be included in future versions of the dataset.

Code availability
The full code allowing to process raw mobile phone data and produce a final temporary migration dataset at the 
desired level of granularity is made available on GitHub at https://github.com/blanchap/TempMigration_SciData. 
A README file containing additional information on the content of each script and how to properly execute 
them is provided in the GitHub repository.
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